Locus of the image of point $ (2,3)$ in the line $\left( {2x - 3y + 4} \right) + k\left( {x - 2y + 3} \right) = 0,k \in R$ is a:
The medians $AD$ and $BE$ of a triangle with vertices $A\;(0,\;b),\;B\;(0,\;0)$ and $C\;(a,\;0)$ are perpendicular to each other, if
Draw a quadrilateral in the Cartesian plane, whose vertices are $(-4,5),(0,7) (5,-5)$ and $(-4,-2) .$ Also, find its area.
Given $A(1, 1)$ and $AB$ is any line through it cutting the $x-$ axis in $B$. If $AC$ is perpendicular to $AB$ and meets the $y-$ axis in $C$, then the equation of locus of mid- point $P$ of $BC$ is
The equation to the sides of a triangle are $x - 3y = 0$, $4x + 3y = 5$ and $3x + y = 0$. The line $3x - 4y = 0$ passes through