A vertex of equilateral triangle is $(2, 3)$ and equation of opposite side is $x + y = 2,$ then the equation of one side from rest two, is

  • [IIT 1975]
  • A

    $y - 3 = 2(x - 2)$

  • B

    $y - 3 = (2 - \sqrt 3 )(x - 2)$

  • C

    $y - 3 = (\sqrt 3 - 1)(x - 2)$

  • D

    None of these

Similar Questions

The vertices of $\Delta PQR$ are $P (2,1), Q (-2,3)$ and $R (4,5) .$ Find equation of the median through the vertex $R$.

Let $m_{1}, m_{2}$ be the slopes of two adjacent sides of a square of side a such that $a^{2}+11 a+3\left(m_{2}^{2}+m_{2}^{2}\right)=220$. If one vertex of the square is $(10(\cos \alpha-\sin \alpha), 10(\sin \alpha+\cos \alpha))$, where $\alpha \in\left(0, \frac{\pi}{2}\right)$ and the equation of one diagonal is $(\cos \alpha-\sin \alpha) x +(\sin \alpha+\cos \alpha) y =10$, then  $72 \left(\sin ^{4} \alpha+\cos ^{4} \alpha\right)+a^{2}-3 a+13$ is equal to.

  • [JEE MAIN 2022]

Given $A(1, 1)$ and $AB$ is any line through it cutting the $x-$ axis in $B$. If $AC$ is perpendicular to $AB$ and meets the $y-$ axis in $C$, then the equation of locus of mid- point $P$ of $BC$ is

The co-ordinates of the orthocentre of the triangle bounded by the lines, $4x - 7y + 10 = 0; x + y=5$ and $7x + 4y = 15$ is :

Locus of the points which are at equal distance from $3x + 4y - 11 = 0$ and $12x + 5y + 2 = 0$ and which is near the origin is