- Home
- Standard 11
- Mathematics
9.Straight Line
hard
Let $A B C D$ be a tetrahedron such that the edges $AB , AC$ and $AD$ are mutually perpendicular. Let the areas of the triangles $ABC , ACD$ and $ADB$ be $5,6$ and $7$ square units respectively. Then the area (in square units) of the $\triangle BCD$ is equal to :
A$\sqrt{340}$
B$12$
C$\sqrt{110}$
D$7 \sqrt{3}$
(JEE MAIN-2025)
Solution
$ Ar (\triangle BCD )$
$=\sqrt{( Ar (\triangle ABC ))^2+( Ar ( ACD ))^2+( Ar (\triangle ADB ))^2}$
$=\sqrt{5^2+6^2+7^2}$
$=\sqrt{110}$
$=\sqrt{( Ar (\triangle ABC ))^2+( Ar ( ACD ))^2+( Ar (\triangle ADB ))^2}$
$=\sqrt{5^2+6^2+7^2}$
$=\sqrt{110}$
Standard 11
Mathematics