- Home
- Standard 11
- Mathematics
4-1.Complex numbers
hard
Let $z$ and $w$ be two complex numbers such that $|z|\, \le 1,$ $|w|\, \le 1$and $|z + iw|\, = \,|z - i\overline w | = 2$. Then $z$ is equal to
A
$1$ or $i$
B
$i$ or $ - i$
C
$1$ or $-1$
D
$i$ or $ -1$
(IIT-1995)
Solution
(c)Let $z = a + ib,|z| \le 1$$⇒$ ${a^2} + {b^2} \le 1$
and $w = c + id,|w|\, \le 1$$⇒$ ${c^2} + {d^2} \le 1$
$|z + iw|\, = \,|a + ib + i(c + id)| = 2$
$⇒$ ${(a – d)^2} + {(b + c)^2} = 4$ ……$(i)$
$|z – i\overline w |\, = \,|a + ib – i(c – id)|$
$⇒$ ${(a – d)^2} + {(b – c)^2} = 4$……$(ii)$
From $(i) $ and $ (ii)$, we get $bc = 0$
$⇒$ Either $b = 0$or $c = 0$
If $b = 0$, then ${a^2} \le 1$.
Then, only possibility is $a = 1$or $ – 1$.
Standard 11
Mathematics