4-1.Complex numbers
hard

જો $z$અને $w$ બે સંકર સંખ્યા છે કે જેથી $|z|\, \le 1,$ $|w|\, \le 1$ અને $|z + iw|\, = \,|z - i\overline w | = 2$. તો $z$ મેળવો.

A

$1$ અથવા $i$

B

$i$ અથવા $ - i$

C

1 અથવા $-1$

D

$i$ અથવા $-1$

(IIT-1995)

Solution

(c)Let $z = a + ib,|z| \le 1$ $⇒$  ${a^2} + {b^2} \le 1$
and $w = c + id,|w|\, \le 1$ $⇒$  ${c^2} + {d^2} \le 1$
$|z + iw|\, = \,|a + ib + i(c + id)| = 2$
$⇒$  ${(a – d)^2} + {(b + c)^2} = 4$ ……$(i)$
$|z – i\overline w |\, = \,|a + ib – i(c – id)|$
$⇒$  ${(a – d)^2} + {(b – c)^2} = 4$……$(ii)$
From $(i)$  and $(ii)$, we get $bc = 0$
$⇒$  Either $b = 0$or $c = 0$
If $b = 0$, then ${a^2} \le 1$. 

Then, only possibility is $a = 1$or $ – 1$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.