माना समुच्चय $S$ में $n$ अवयव हैं व समुच्चय $S$ के दो उपसमुच्चयों को यदृच्छया चुना जाता है तब $A \cup B = S$ व $A \cap B = \phi $ की प्रायिकता है
${2^n}$
${n^2}$
$1/n$
$1/{2^n}$
एक अनभिनत (unbiased) पासे को दो बार उछाला गया। मान लें $A$ घटना 'पहली उछाल पर विषम संख्या प्राप्त होना' और $B$ घटना 'द्वितीय उछाल पर विषम संख्या प्राप्त होना ' दर्शाते हैं। घटनाओं $A$ और $B$ के स्वातंत्र्य का परीक्षण कीजिए।
एक अभिनत सिक्का उछाला जाता है। यदि इस पर शीर्ष प्राप्त होता है तो एक पाँसे का युग्म उछाला जाता है तथा उन पर प्राप्त संख्याओं को जोड़कर नोट कर लिया जाता है। यदि पुच्छ आता है तो $11$ पत्तों की एक गड्डी $2, 3, 4,.......,12$ में से एक पत्ता खींचा जाता है एवं उस पर अंकित संख्या को नोट किया जाता है तो इस बात की प्रायिकता कि नोट की हुई संख्या $7$ या $8$ हो, है
घटनाओं $A$ तथा $B$ में से कम से कम एक घटना के घटित होने की प्रायिकता $3/5$ है। यदि $A$ तथा $B$ के एक साथ होने की प्रायिकता $1/5$ है, तब $P(A') + P(B')$ का मान है
यदि $P(A) = 2/3$, $P(B) = 1/2$ तथा ${\rm{ }}P(A \cup B) = 5/6$ तब घटनायें $A$ तथा $B$ हैं
एक ताश की गड्डी से एक पत्ता निकाला जाता है, उसके बेगम या पान का पत्ता होने की प्रायिकता है