यदि $A$ तथा $B$ घटनायें इस प्रकार हैं कि $P(A \cup B) = 3/4,$ $P(A \cap B) = 1/4,$ $P(\bar A) = 2/3,$ तब $P(\bar A \cap B) =$

  • [AIEEE 2002]
  • A

    $\frac{5}{{12}}$

  • B

    $\frac{3}{8}$

  • C

    $\frac{5}{8}$

  • D

    $\frac{1}{4}$

Similar Questions

एक पात्र $A$ में $6$ लाल व $4$ काली गेंदें हैं तथा पात्र $B$ में $4$ लाल व $6$ काली गेंदें हैं। पात्र $A$ में से एक गेंद यदृच्छया निकाली जाती है और पात्र $B$ में रख दी जाती है। फिर एक गेंद पात्र $B$ में से निकालकर पात्र $A$ में रख दी जाती । यदि अब एक गेंद पात्र $A$ में से यदृच्छया निकाली जाए तो इसके लाल रंग की होने की प्रायिकता है

  • [IIT 1988]

तीन घटनाओं $A$, $B$ तथा $C$ के लिए

$P(A$ अथवा $B$ में से केवल एक घटित हांती है $)$

$=P(B$ अथवा $C$ में से केवल एक घटित होती है $)$

$=P(C$ अथवा $A$ में से केबल एक घटित होती है

$=\frac{1}{4}$ तथा $P$ (सभी तीन घटनाएँ एक साथ घटित होती है)

$=\frac{1}{16}$ है,

तो प्रायिकता कि कम से कम एक घटना घटित हो, है:

  • [JEE MAIN 2017]

दी गई घटनाएँ $A$ और $B$ ऐसी हैं $,$ जहाँ $P ( A )=\frac{1}{4}, P ( B )=\frac{1}{2}$ और $P ( A \cap B )=\frac{1}{8}$ तब $P ( A -$ नहीं और $B$ -नहीं $)$ ज्ञात कीजिए।

एक पासे पर $1,2,3$ लाल रंग से और $4,5,6$ हरे रंग से लिखे गए हैं। इस पासे को उछाला गया। मान लें $A$ घटना 'संख्या सम है' और $B$ घटना 'संख्या लाल रंग से लिखी गई है', को निरूपित करते हैं। क्या $A$ और $B$ स्वतंत्र हैं?

$A$ व $B$ दो परस्पर अपवर्जी घटनायें इस प्रकार हैं कि $P(A) = 0.45$ व $P(B) = 0.35,$ तो $P (A$ या $B$) का मान है