एक विद्यार्थी के अंतिम परीक्षा के अंग्रेजी और हिंदी दोनों विषयों को उत्तीर्ण करने की प्रायिकता $0.5$ है और दोनों में से कोई भी विषय उत्तीर्ण न करने की प्रायिकता $0.1$ है। यदि अंग्रेज़ी की परीक्षा उत्तीर्ण करने की प्रायिकता $0.75$ हो तो हिंदी की परीक्षा उत्तीर्ण करने की प्रायिकता क्या है ?
Let $A$ and $B$ be the events of passing English and Hindi examination respectively.
Accordingly, $P ( A $ and $B)=0.5$, $P ($ not $A$ and $B )=0.1,$
i.e., $P \left( A^{\prime} \cap B ^{\prime}\right)=0.1$
$P ( A )=0.75$
Now, $P ( A \cap B ) ^{\prime}= P \left( A ^{\prime} \cap B ^{\prime}\right)$ [De Morgan's law]
$\therefore P(A \cap B)^{\prime}=P\left(A^{\prime} \cap B^{\prime}\right)=0.1$
$P ( A \cup B )=1- P ( A \cup B )^{\prime} =1-0.1=0.9$
We know that $P ( A$ or $ B )= P ( A )+ P ( B )- P ( A$ and $ B )$
$\therefore $ $0.9=0.75+ P ( B )-0.5$
$\Rightarrow P ( B )=0.9-0.75+0.5$
$\Rightarrow P(B)=0.65$
Thus, the probability of passing the Hindi examination is $0.65$.
दो गेंद एक बॉक्स से बिना प्रतिस्थापित किए निकाली जाती है। बॉक्स में $10$ काली और $8$ लाल गेदें हैं तो प्रायिकता ज्ञात कीजिए दोनों गेंदें लाल हो।
यदि एक घटना के प्रतिकूल संयोगानुपात $2 : 3$ हो, तो उसके घटने की प्रायिकता है
यदि $P(A) = 2/3$, $P(B) = 1/2$ तथा ${\rm{ }}P(A \cup B) = 5/6$ तब घटनायें $A$ तथा $B$ हैं
एक विशेष समस्या को $A$ और $B$ द्वारा स्वतंत्र रूप से हल करने की प्रायिकताएँ क्रमश : $\frac{1}{2}$ और $\frac{1}{3}$ हैं। यदि दोनों, स्वतंत्र रूप से, समस्या हल करने का प्रयास करते हैं, तो प्रायिकता ज्ञात कीजिए कि उनमें से तथ्यत: कोई एक समस्या हल कर लेता है।
यदि $P\,({A_1} \cup {A_2}) = 1 - P(A_1^c)\,P(A_2^c)$ जहाँ $c$ पूरक के लिये है, तब घटनाएँ ${A_1}$ तथा ${A_2}$ हैं