8. Sequences and Series
hard

Let ${a_1},{a_2},{a_3}, \ldots $ be terms of $A.P.$  If $\frac{{{a_1} + {a_2} + \ldots + {a_p}}}{{{a_1} + {a_2} + \ldots + {a_q}}} = \frac{{{p^2}}}{{{q^2}}},p \ne q$ then $\frac{{{a_6}}}{{{a_{21}}}}$ equals

A

$\frac{{41}}{{11}}$

B

$\frac{7}{2}$

C

$\frac{2}{7}$

D

$\frac{{11}}{{41}}$

(AIEEE-2006)

Solution

$\frac{\frac{p}{2}\left|2 a_{1}+(p-1) d\right|}{\frac{q}{2}\left|2 a_{1}+(q-1) d\right|}=\frac{p^{2}}{q^{2}}$

$\Rightarrow \frac{2 a_{1}+(p-1) d}{2 a_{1}+(p-1) d}=\frac{p}{q}$

$\frac{a_{1}+\left(\frac{p-1}{2}\right) d}{a_{1}+\left(\frac{q-1}{2}\right) d}=\frac{p}{q}$

For $\frac{a_{6}}{a_{21}}, p=11, q=41$

$\Rightarrow \frac{a_{6}}{a_{21}}=\frac{11}{41}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.