If ${S_n} = nP + \frac{1}{2}n(n - 1)Q$, where ${S_n}$ denotes the sum of the first $n$ terms of an $A.P.$, then the common difference is

  • A

    $P + Q$

  • B

    $2P + 3Q$

  • C

    $2Q$

  • D

    $Q$

Similar Questions

If $a,b,c$ are in $A.P.$, then $\frac{1}{{\sqrt a + \sqrt b }},\,\frac{1}{{\sqrt a + \sqrt c }},$ $\frac{1}{{\sqrt b + \sqrt c }}$ are in

If $a_1, a_2, a_3, .... a_{21}$ are in $A.P.$ and $a_3 + a_5 + a_{11}+a_{17} + a_{19} = 10$ then the value of $\sum\limits_{r = 1}^{21} {{a_r}} $ is 

If $x,y,z$ are in $A.P. $ and ${\tan ^{ - 1}}x,{\tan ^{ - 1}}y$ and ${\tan ^{ - 1}}z$ are also in $A.P.$, then

Suppose the sum of the first $m$ terms of an arithmetic progression is $n$ and the sum of its first $n$ terms is $m$, where $m \neq n$. Then, the sum of the first $(m+n)$ terms of the arithmetic progression is

  • [KVPY 2018]

If $a,\;b,\;c,\;d,\;e,\;f$ are in $A.P.$, then the value of $e - c$ will be