Let ${f_k}\left( x \right) = \frac{1}{k}\left( {{{\sin }^k}x + {{\cos }^k}x} \right)\;,x \in R$ and $k \ge 1$, then ${f_4}\left( x \right) - {f_6}\left( x \right)$ is equal to

  • [JEE MAIN 2014]
  • A

    $\frac{1}{4}$

  • B

    $\frac{1}{{12}}$

  • C

    $\frac{1}{6}$

  • D

    $\frac{1}{3}$

Similar Questions

Which one of the following best represent the graph of $y = \frac{|x-x^2|}{x^2-x}$ ? 

The largest interval lying in $\left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)$ for which the function, $f\left( x \right) = {4^{ - {x^2}}} + {\cos ^{ - 1}}\left( {\frac{x}{2} - 1} \right) + \log \left( {\cos x} \right)$  is defined is

  • [AIEEE 2007]

Function $f(x)={\left( {1 + \frac{1}{x}} \right)^x}$ then Range of the function f (x) is

The domain of the function $f(x) = {\sin ^{ - 1}}[{\log _2}(x/2)]$ is

Given the function $f(x) = \frac{{{a^x} + {a^{ - x}}}}{2},\;(a > 2)$. Then $f(x + y) + f(x - y) = $