Let ${f_k}\left( x \right) = \frac{1}{k}\left( {{{\sin }^k}x + {{\cos }^k}x} \right)\;,x \in R$ and $k \ge 1$, then ${f_4}\left( x \right) - {f_6}\left( x \right)$ is equal to
$\frac{1}{4}$
$\frac{1}{{12}}$
$\frac{1}{6}$
$\frac{1}{3}$
Which one of the following best represent the graph of $y = \frac{|x-x^2|}{x^2-x}$ ?
The largest interval lying in $\left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)$ for which the function, $f\left( x \right) = {4^{ - {x^2}}} + {\cos ^{ - 1}}\left( {\frac{x}{2} - 1} \right) + \log \left( {\cos x} \right)$ is defined is
Function $f(x)={\left( {1 + \frac{1}{x}} \right)^x}$ then Range of the function f (x) is
The domain of the function $f(x) = {\sin ^{ - 1}}[{\log _2}(x/2)]$ is
Given the function $f(x) = \frac{{{a^x} + {a^{ - x}}}}{2},\;(a > 2)$. Then $f(x + y) + f(x - y) = $