Let $R =\{ a , b , c , d , e \}$ and $S =\{1,2,3,4\}$. Total number of onto function $f: R \rightarrow S$ such that $f(a) \neq$ 1 , is equal to $.............$.

  • [JEE MAIN 2023]
  • A

    $180$

  • B

    $170$

  • C

    $160$

  • D

    $150$

Similar Questions

The graph of function $f$ contains the point $P (1, 2)$ and $Q(s, r)$. The equation of the secant line through $P$ and $Q$ is $y = \left( {\frac{{{s^2} + 2s - 3}}{{s - 1}}} \right)$ $x - 1 - s$. The value of $f ‘ (1)$, is

Consider the function $f (x) = x^3 - 8x^2 + 20x -13$
Number of positive integers $x$ for which $f (x)$ is a prime number, is

Consider a function $f:\left[ { - 1,1} \right] \to R$ where $f(x) = {\alpha _1}{\sin ^{ - 1}}x + {\alpha _3}\left( {{{\sin }^{ - 1}}{x^3}} \right) + ..... + {\alpha _{(2n + 1)}}{({\sin ^{ - 1}}x)^{(2n + 1)}} - {\cot ^{ - 1}}x$ Where $\alpha _i\ 's$ are positive constants and $n \in N < 100$ , then $f(x)$ is

Let $N$ be the set of positive integers. For all $n \in N$, let $f_n=(n+1)^{1 / 3}-n^{1 / 3} \text { and }$ $A=\left\{n \in N: f_{n+1}<\frac{1}{3(n+1)^{2 / 3}} < f_n\right\}$ Then,

  • [KVPY 2019]

If $f(x) = \cos (\log x)$, then $f({x^2})f({y^2}) - \frac{1}{2}\left[ {f\,\left( {\frac{{{x^2}}}{2}} \right) + f\left( {\frac{{{x^2}}}{{{y^2}}}} \right)} \right]$ has the value