Let $f: R \rightarrow R$ be a function defined by $f(x)=(2+3 a) x^2+\left(\frac{a+2}{a-1}\right) x+b, a \neq 1$. If $f(x+y)=f(x)+f(y)+1-\frac{2}{7} x y$, then the value of $28 \sum_{i=1}^3|f(i)|$ is:

  • [JEE MAIN 2025]
  • A
    $715$
  • B
    $735$
  • C
    $545$
  • D
    $675$

Similar Questions

If domain of function $f(x) = \sqrt {\ln \left( {m\sin x + 4} \right)} $ is $R$ , then number of possible integral values of $m$ is

The range of the function $f(x){ = ^{7 - x}}{\kern 1pt} {P_{x - 3}}$ is

  • [AIEEE 2004]

If $a, b$ be two fixed positive integers such that $f(a + x) = b + {[{b^3} + 1 - 3{b^2}f(x) + 3b{\{ f(x)\} ^2} - {\{ f(x)\} ^3}]^{\frac{1}{3}}}$ for all real $x$, then $f(x)$ is a periodic function with period

If $f(x) = \frac{{{x^2} - 1}}{{{x^2} + 1}}$, for every real numbers. then the minimum value of $f$

Show that the function $f: N \rightarrow N$ given by $f(x)=2 x,$ is one-one but not onto.