4-2.Quadratic Equations and Inequations
hard

Let $y = \sqrt {\frac{{(x + 1)(x - 3)}}{{(x - 2)}}} $, then all real values of $x$ for which $y$ takes real values, are

A

$ - 1 \le x < 2$ or $x \ge 3$

B

$ - 1 \le x < 3$ or $x > 2$

C

$1 \le x < 2$ or $x \ge 3$

D

None

(IIT-1980)

Solution

(a) $y = \sqrt {\frac{{(x + 1)(x – 3)}}{{(x – 2)}}} $

Here $x$ cannot be $2$.

==> Either both ${N^r}$ and ${D^r}$ are positive

$x \ge – 1,x \ge 3$ and $x > 2 \Rightarrow x \ge 3$…..$(i)$

Or ${N^r}$ is negative and ${D^r}$ is negative

$x \ge – 1$ and $x < 2 \Rightarrow – 1 \le x < 2$…..$(ii)$

From $(i)$ and $(ii),$ $ – 1 \le x < 2$ or $x \ge 3$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.