- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
normal
Let $f (x) =$ $\left| {\begin{array}{*{20}{c}}{1\, + \,{{\sin }^2}x}&{{{\cos }^2}x}&{4\,\sin \,2x}\\{{{\sin }^2}x}&{1\, + \,{{\cos }^2}x}&{4\,\sin \,2x}\\{{{\sin }^2}x}&{{{\cos }^2}x}&{1\, + \,4\,\sin \,2x}\end{array}} \right|$, then the maximum value of $f (x) =$
A
$2$
B
$4$
C
$6$
D
$8$
Solution
Use $R_1 \rightarrow R_1 – R_2 \, \& \, R_2 \rightarrow R_2 – R_3$ and expand to get $f(x) = 2 + 4 \, \sin \, 2x$
Standard 12
Mathematics