3 and 4 .Determinants and Matrices
hard

If $\mathrm{a, b, c}$ are positive and unequal, show that value of the determinant $\Delta=\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$ is negative.

 

Option A
Option B
Option C
Option D

Solution

Applying $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$ to the given determinant, we get

$\Delta  = \left| {\begin{array}{*{20}{l}}
  {a + b + c}&b&c \\ 
  {a + b + c}&c&a \\ 
  {a + b + c}&a&b 
\end{array}} \right| = (a + b + c)\left| {\begin{array}{*{20}{c}}
  1&b&c \\ 
  1&c&a \\ 
  1&a&b 
\end{array}} \right|$

${ = (a + b + c)\left| {\begin{array}{*{20}{c}}
  1&b&c \\ 
  0&{c – b}&{a – c} \\ 
  0&{a – b}&{b – c} 
\end{array}} \right|}$ ${{\text{(Applying }}{{\text{R}}_2} \to {{\text{R}}_2} – {{\text{R}}_1},{\text{ and }}{{\text{R}}_3} \to {{\text{R}}_3} – {{\text{R}}_1})}$

$ = (a + b + c)[(c – b)(b – c) – (a – c)(a – b)]$ ${\text{(Expanding along }}{{\text{C}}_1}{\text{ ) }}$

$ = (a + b + c)\left( { – {a^2} – {b^2} – {c^2} + ab + bc + ca} \right)$

which is negative (since $\left.a+b+c>0 \text { and }(a-b)^{2}+(b-c)^{2}+(c-a)^{2}>0\right)$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.