If $\mathrm{a, b, c}$ are positive and unequal, show that value of the determinant $\Delta=\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$ is negative.

 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Applying $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$ to the given determinant, we get

$\Delta  = \left| {\begin{array}{*{20}{l}}
  {a + b + c}&b&c \\ 
  {a + b + c}&c&a \\ 
  {a + b + c}&a&b 
\end{array}} \right| = (a + b + c)\left| {\begin{array}{*{20}{c}}
  1&b&c \\ 
  1&c&a \\ 
  1&a&b 
\end{array}} \right|$

${ = (a + b + c)\left| {\begin{array}{*{20}{c}}
  1&b&c \\ 
  0&{c - b}&{a - c} \\ 
  0&{a - b}&{b - c} 
\end{array}} \right|}$ ${{\text{(Applying }}{{\text{R}}_2} \to {{\text{R}}_2} - {{\text{R}}_1},{\text{ and }}{{\text{R}}_3} \to {{\text{R}}_3} - {{\text{R}}_1})}$

$ = (a + b + c)[(c - b)(b - c) - (a - c)(a - b)]$ ${\text{(Expanding along }}{{\text{C}}_1}{\text{ ) }}$

$ = (a + b + c)\left( { - {a^2} - {b^2} - {c^2} + ab + bc + ca} \right)$

which is negative (since $\left.a+b+c>0 \text { and }(a-b)^{2}+(b-c)^{2}+(c-a)^{2}>0\right)$

Similar Questions

$$f(x)=\left| {\begin{array}{*{20}{c}} {{{\sin }^2}x}&{ - 2 + {{\cos }^2}x}&{\cos 2x} \\ {2 + {{\sin }^2}x}&{{{\cos }^2}x}&{\cos 2x} \\ {{{\sin }^2}x}&{{{\cos }^2}x}&{1 + \cos 2x} \end{array}} \right| ,x \in[0, \pi]$$

Then the maximum value of $f(x)$ is equal to $.....$

  • [JEE MAIN 2021]

$\left| {\,\begin{array}{*{20}{c}}1&1&1\\{\cos (nx)}&{\cos (n + 1)x}&{\cos (n + 2)x}\\{\sin (nx)}&{\sin (n + 1)x}&{\sin (n + 2)x}\end{array}\,} \right|$ is not depend

Value of $\left| {\begin{array}{*{20}{c}}
  {{{(b + c)}^2}}&{{a^2}}&{{a^2}} \\ 
  {{b^2}}&{{{(a + c)}^2}}&{{b^2}} \\ 
  {{c^2}}&{{c^2}}&{{{(a + b)}^2}} 
\end{array}} \right|$ is equal to

If $a, b, c$ are all different from zero and $\left| {\begin{array}{*{20}{c}} {1  + a}&1&1\\ 1&{1  +  b}&1\\ 1&1&{1  +  c} \end{array}} \right| = 0$ , then the value of $a^{-1} + b^{-1} + c^{-1}$ is

By using properties of determinants, show that:

$\left|\begin{array}{ccc}0 & a & -b \\ -a & 0 & -c \\ b & c & 0\end{array}\right|=0$