Let $A =$ $\left[ {\begin{array}{*{20}{c}}{1 + {x^2} - {y^2} - {z^2}}&{2(xy + z)}&{2(zx - y)}\\{2(xy - z)}&{1 + {y^2} - {z^2} - {x^2}}&{2(yz + x)}\\{2(zx + y)}&{2(yz - x)}&{1 + {z^2} - {x^2} - {y^2}}\end{array}} \right]$  then det. $A$ is equal to

  • A
    $(1 + xy + yz + zx)^3$
  • B
    $(1 + x^2 + y^2 + z^2)^3$
  • C
    $(xy + yz + zx)^3$
  • D
    $(1 + x^3 + y^3 + z^3)^2$

Similar Questions

Evaluate $\left|\begin{array}{rr}2 & 4 \\ -1 & 2\end{array}\right|$

The value of $k \in R$, for which the following system of linear equations

$3 x-y+4 z=3$

$x+2 y-3 x=-2$

$6 x+5 y+k z=-3$

has infinitely many solutions, is:

  • [JEE MAIN 2021]

If $q_1$ , $q_2$ , $q_3$ are roots of the equation $x^3 + 64$ = $0$ , then the value of $\left| {\begin{array}{*{20}{c}}
  {{q_1}}&{{q_2}}&{{q_3}} \\ 
  {{q_2}}&{{q_3}}&{{q_1}} \\ 
  {{q_3}}&{{q_1}}&{{q_2}} 
\end{array}} \right|$ is

If $a, b, c$ are non-zero real numbers and if the system of equations $(a - 1 )x = y + z,$  $(b - 1 )y = z + x ,$ $(c - 1 )z= x + y,$ has a non-trivial solution, then $ab + bc + ca$ equals

  • [JEE MAIN 2014]

If ${D_p} = \left| {\,\begin{array}{*{20}{c}}p&{15}&8\\{{p^2}}&{35}&9\\{{p^3}}&{25}&{10}\end{array}\,} \right|$, then ${D_1} + {D_2} + {D_3} + {D_4} + {D_5} = $