Gujarati
Hindi
3 and 4 .Determinants and Matrices
normal

Let $A =$ $\left[ {\begin{array}{*{20}{c}}{1 + {x^2} - {y^2} - {z^2}}&{2(xy + z)}&{2(zx - y)}\\{2(xy - z)}&{1 + {y^2} - {z^2} - {x^2}}&{2(yz + x)}\\{2(zx + y)}&{2(yz - x)}&{1 + {z^2} - {x^2} - {y^2}}\end{array}} \right]$  then det. $A$ is equal to

A$(1 + xy + yz + zx)^3$
B$(1 + x^2 + y^2 + z^2)^3$
C$(xy + yz + zx)^3$
D$(1 + x^3 + y^3 + z^3)^2$

Solution

multiply $R_2$ by $z$ and $R_3$ by $y$ and use $R_1 \rightarrow R_1 -R_2 + R_3$ Objective approach : put $z = y = 0$ then choices are $A = 1 ; B = (1 + x^2)^3 ; C = 0 ; D = (1 + x^3)^2$ and determinant comes out to be $(1 + x^2)^3$
Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.