$\left| {\begin{array}{*{20}{c}}
{4 + {x^2}}&{ - 6}&{ - 2}\\
{ - 6}&{9 + {x^2}}&3\\
{ - 2}&3&{1 + {x^2}}
\end{array}} \right|$ $;(x\neq0)$ is not divisible by
$x$
$x^3$
$14+x^2$
$x^5$
If $a,b,c$ are respectively the ${p^{th}},{q^{th}}{r^{th}}$terms of an $A.P.,$ the $\left| {\,\begin{array}{*{20}{c}}a&p&1\\b&q&1\\c&r&1\end{array}\,} \right| = $
$\left| {\,\begin{array}{*{20}{c}}{13}&{16}&{19}\\{14}&{17}&{20}\\{15}&{18}&{21}\end{array}\,} \right| = $
If ${a_1},{a_2},{a_3}.....{a_n}....$ are in $G.P.$ then the value of the determinant $\left| {\,\begin{array}{*{20}{c}}{\log {a_n}}&{\log {a_{n + 1}}}&{\log {a_{n + 2}}}\\{\log {a_{n + 3}}}&{\log {a_{n + 4}}}&{\log {a_{n + 5}}}\\{\log {a_{n + 6}}}&{\log {a_{n + 7}}}&{\log {a_{n + 8}}}\end{array}\,} \right|$ is
The system of equations ${x_1} - {x_2} + {x_3} = 2,$ $\,3{x_1} - {x_2} + 2{x_3} = - 6$ and $3{x_1} + {x_2} + {x_3} = - 18$ has
The value of $\lambda$ and $\mu$ such that the system of equations $x+y+z=6,3 x+5 y+5 z=26, x+2 y+\lambda z=\mu$ has no solution, are :