- Home
- Standard 12
- Mathematics
5. Continuity and Differentiation
normal
Let $a > 0$ and $f$ be continuous in $[- a, a]$. Suppose that $f ' (x) $ exists and $f ' (x) \le 1$ for all $x \in (- a, a)$. If $f (a) = a$ and $f (- a) = - a$ then $f (0)$
A
equals $0$
B
equals $\frac{1}{2}$
C
equals $1$
D
is not possible to determine
Solution
Use $LMVT$ once in $[-a, 0]$ and then in $[0, a]$ and use the fact $f '(x) \le 1$
Standard 12
Mathematics