Suppose that $f$ is differentiable for all $x$ and that $f '(x) \le 2$ for all x. If $f (1) = 2$ and $f (4) = 8$ then $f (2)$ has the value equal to
$3$
$4$
$6$
$8$
Consider the function $f (x) = 8x^2 - 7x + 5$ on the interval $[-6, 6]$. The value of $c$ that satisfies the conclusion of the mean value theorem, is
If $f(x)$ = $sin^2x + xsin2x.logx$, then $f(x)$ = $0$ has
If $c$ is a point at which Rolle's theorem holds for the function, $f(\mathrm{x})=\log _{\mathrm{e}}\left(\frac{\mathrm{x}^{2}+\alpha}{7 \mathrm{x}}\right)$ in the interval $[3,4],$ where $\alpha \in \mathrm{R},$ then $f^{\prime \prime}(\mathrm{c})$ is equal to
For a real number $x$ let $[x]$ denote the largest number less than or equal to $x$. For $x \in R$ let $f(x)=[x] \sin \pi x$. Then,
If $f(x)$ satisfies the conditions of Rolle’s theorem in $[1,\,2]$ and $f(x)$ is continuous in $[1,\,2]$ then $\int_1^2 {f'(x)dx} $ is equal to