3.Trigonometrical Ratios, Functions and Identities
normal

Let $S_1,S_2$ and $S_3$ be three circles of unit radius which touch each other externally. The common tangent to each pair of circles are drawn and extended so that they  can intersect and form a triangle $ABC$ with circumradius $R,$ then $R$ is equal to

A

$4+2\sqrt 3$

B

$2(1+\frac{1}{\sqrt 3})$

C

$4(1+\sqrt 3)$

D

$\frac{3(1+\sqrt 3)}{2}$

Solution

Ans. $( 2 )$ 

$\mathrm{BM}=\mathrm{NC}=\cot 30^{\circ}=\sqrt{3}$

and $\mathrm{MN}=2$

$\therefore \mathrm{BC}=2(1+\sqrt{3})$

$\therefore$ By sine Rule

$\mathrm{R}=\frac{2(1+\sqrt{3})}{2 \sin 60^{\circ}}=2\left(1+\frac{1}{\sqrt{3}}\right)$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.