Let $f : R \rightarrow R\ f(x) = x^3 -3x^2 + 3x\ -2$ , then $f^{-1}(x)$ is given by
$1 + \sqrt[3]{{x + 1}}$
$1 + \sqrt[3]{{x - 1}}$
$\sqrt[3]{{x + 1}} - 1$
$\sqrt[3]{{x - 1}} - 1$
Let $f: R -\{3\} \rightarrow R -\{1\}$ be defined by $f(x)=\frac{x-2}{x-3} .$ Let $g: R \rightarrow R$ be given as $g ( x )=2 x -3$. Then, the sum of all the values of $x$ for which $f^{-1}( x )+ g ^{-1}( x )=\frac{13}{2}$ is equal to ...... .
Which of the following functions cannot have their inverse defined ? (where $[.]\, \to$ greatest integer function)
Let f : $R \to R$ be defined by $f\left( x \right) = \ln \left( {x + \sqrt {{x^2} + 1} } \right)$ , then number of solutions of $\left| {{f^{ - 1}}\left( x \right)} \right| = {e^{ - \left| x \right|}}$ is
State with reason whether following functions have inverse $h:\{2,3,4,5\} \rightarrow\{7,9,11,13\}$ with $h=\{(2,7),(3,9),(4,11),(5,13)\}$
Which of the following function is inverse function