Let $Y =\left\{n^{2}: n \in N \right\} \subset N .$ Consider $f: N \rightarrow Y$ as $f(n)=n^{2}$ Show that $f$ is invertible. Find the inverse of $f$
An arbitrary element $y$ in $Y$ is of the form $n^{2}$, for some $n \in N .$ This implies that $n=\sqrt{y} .$ This gives a function $g: Y \rightarrow N$, defined by $g(y)=\sqrt{y} .$ Now, $gof\,(n)$ $=g\left(n^{2}\right)$ $=\sqrt{n^{2}}=n$ and $fog (y)=f(\sqrt{y})=$ $(\sqrt{y})^{2}=y,$ which shows that $g o f=I_{N}$ and $f o g=I_{Y} .$ Hence, $f$ is invertible with $f^{-1}=g$
Let $f: X \rightarrow Y$ be an invertible function. Show that the inverse of $f^{-1}$ is $f$, i.e., $\left(f^{-1}\right)^{-1}=f$.
If the function $f(x) = x^5 + e^{\frac {x}{5}}$ and $g(x) = f^{-1} (x)$ , then the value of $\frac{1}{{g'\left( {1 + {e^{1/5}}} \right)}}$ is
If $f:IR \to IR$ is defined by $f(x) = 3x - 4$, then ${f^{ - 1}}:IR \to IR$ is
If the function $f:[1,\;\infty ) \to [1,\;\infty )$ is defined by $f(x) = {2^{x(x - 1)}},$ then ${f^{ - 1}} (x)$ is
If $f$ be the greatest integer function and $g$ be the modulus function, then $(gof)\left( { - \frac{5}{3}} \right) - (fog)\left( { - \frac{5}{3}} \right) = $