$2x + 3y + 4z = 9$,$4x + 9y + 3z = 10,$$5x + 10y + 5z = 11$ then the value of $ x$ is
$\left| {\,\begin{array}{*{20}{c}}9&3&4\\{10}&9&3\\{11}&{10}&5\end{array}\,} \right| \div \left| {\,\begin{array}{*{20}{c}}2&3&4\\4&9&3\\5&{10}&5\end{array}\,} \right|$
$\left| {\,\begin{array}{*{20}{c}}9&4&3\\{10}&3&9\\{11}&5&{10}\end{array}\,} \right| \div \left| {\,\begin{array}{*{20}{c}}2&3&4\\4&9&3\\5&{10}&5\end{array}\,} \right|$
$\left| {\,\begin{array}{*{20}{c}}9&4&9\\{10}&3&3\\{11}&5&{10}\end{array}\,} \right| \div \left| {\,\begin{array}{*{20}{c}}3&2&4\\9&4&3\\{10}&5&5\end{array}\,} \right|$
None of these
Let $\left| {\,\begin{array}{*{20}{c}}{6i}&{ - 3i}&1\\4&{3i}&{ - 1}\\{20}&3&i\end{array}\,} \right| = x + iy$, then
Find values of $x$, if $\left|\begin{array}{ll}2 & 4 \\ 5 & 1\end{array}\right|=\left|\begin{array}{cc}2 x & 4 \\ 6 & x\end{array}\right|$
Consider system of equations in $x$ , $y$ and $z$
$12x + by + cz = 0$ ; $ax + 24y + cz = 0$ ; $ax + by + 36z = 0$ .
(where $a$ , $b$ , $c$ are real numbers, $a \ne 12$ , $b \ne 24$ , $c \ne 36$ ).
If system of equation has solution and $z \ne 0$, then value of $\frac{1}{{a - 12}} + \frac{2}{{b - 24}} + \frac{3}{{c - 36}}$ is
If the system of equations $x +y + z = 6$ ; $x + 2y + 3z= 10$ ; $x + 2y + \lambda z = 0$ has a unique solution, then $\lambda $ is not equal to
If the system of equations
$x+y+z=2$
$2 x+4 y-z=6$
$3 x+2 y+\lambda z=\mu$ has infinitely many solutions, then