Let $z$ =${i^{2i}}$ , then $|z|$ is (where $i$ =$\sqrt { - 1}$ )
$1$
${e^\pi }$
${e^{ - \pi }}$
${e^{\frac{\pi }{2}}}$
If the conjugate of $(x + iy)(1 - 2i)$ be $1 + i$, then
The amplitude of $\frac{{1 + \sqrt 3 \,i}}{{\sqrt 3 - i}}$ is
If $z$ is a complex number, then $z.\,\overline z = 0$ if and only if
If ${z_1}$ and ${z_2}$ are two non-zero complex numbers such that $|{z_1} + {z_2}| = |{z_1}| + |{z_2}|,$then arg $({z_1}) - $arg $({z_2})$ is equal to
If ${z_1} = 1 + 2i$ and ${z_2} = 3 + 5i$, and then $\operatorname{Re} \left( {\frac{{{{\bar z}_2}{z_1}}}{{{z_2}}}} \right)$ is equal to