Let $z$ =${i^{2i}}$ , then $|z|$ is (where $i$ =$\sqrt { - 1}$ )
$1$
${e^\pi }$
${e^{ - \pi }}$
${e^{\frac{\pi }{2}}}$
$z=\left(e^{i \pi / 2}\right)^{2 i}=e^{-\pi}$
Let $z$ and $w$ be the two non-zero complex numbers such that $|z|\, = \,|w|$ and $arg\,z + arg\,w = \pi $. Then $z$ is equal to
If $arg\,z < 0$ then $arg\,( – z) – arg\,(z)$ is equal to
Let $z _{1}$ and $z _{2}$ be two complex numbers such that $\overline{ z }_{1}=i \overline{ z }_{2}$ and $\arg \left(\frac{ z _{1}}{\overline{ z }_{2}}\right)=\pi$. Then
If $|z – 25i| \le 15$, then $|\max .amp(z) – \min .amp(z)| = $
If $z =2+3 i$, then $z ^{5}+(\overline{ z })^{5}$ is equal to.
Confusing about what to choose? Our team will schedule a demo shortly.