4-1.Complex numbers
hard

If $|z - 25i| \le 15$, then $|\max .amp(z) - \min .amp(z)| = $

A

${\cos ^{ - 1}}\left( {\frac{3}{5}} \right)$

B

$\pi - 2{\cos ^{ - 1}}\left( {\frac{3}{5}} \right)$

C

$\frac{\pi }{2} + {\cos ^{ - 1}}\left( {\frac{3}{5}} \right)$

D

${\sin ^{ - 1}}\left( {\frac{3}{5}} \right) - {\cos ^{ - 1}}\left( {\frac{3}{5}} \right)$

Solution

(b)We have
$max\ amp(z)=amp$$({z_2}),$ $min\ amp (z)=amp$$({z_1})$
Now $amp({z_1}) = {\theta _1} = {\cos ^{ – 1}}\left( {\frac{{15}}{{25}}} \right) = {\cos ^{ – 1}}\left( {\frac{3}{5}} \right)$
$amp({z_2}) = \frac{\pi }{2} + {\theta _2} = \frac{\pi }{2} + {\sin ^{ – 1}}\left( {\frac{{15}}{{25}}} \right) = \frac{\pi }{2} + {\sin ^{ – 1}}\left( {\frac{3}{5}} \right)$
$|\max \,\,amp(z) – \min \,\,amp(z)|$
$ = \left| {\frac{\pi }{2} + {{\sin }^{ – 1}}\frac{3}{5} – {{\cos }^{ – 1}}\frac{3}{5}} \right|$
$ = \left| {\frac{\pi }{2} + \frac{\pi }{2} – {{\cos }^{ – 1}}\frac{3}{5} – {{\cos }^{ – 1}}\frac{3}{5}} \right| = \pi – 2{\cos ^{ – 1}}\frac{3}{5}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.