Let $F_1$ & $F_2$ be the foci of an ellipse $\frac{{{x^2}}}{4} + \frac{{{y^2}}}{9} = 1$ such that a ray from $F_1$ strikes the elliptical mirror at the point $P$ and get reflected. Then equation of angle bisector of the angle between incident ray and reflected ray can be
$y = x + \frac{5}{{\sqrt {13} }}$
$y = 2x - \frac{5}{{\sqrt {13} }}$
$x + y -5 = 0$
$3x -4y -5 = 0$
If the radius of the largest circle with centre $(2,0)$ inscribed in the ellipse $x^2+4 y^2=36$ is $r$, then $12 r^2$ is equal to
A triangle is formed by the tangents at the point $(2,2)$ on the curves $y^2=2 x$ and $x^2+y^2=4 x$, and the line $x+y+2=0$. If $r$ is the radius of its circumcircle, then $r ^2$ is equal to $........$.
An ellipse is described by using an endless string which is passed over two pins. If the axes are $6\ cm$ and $4\ cm$, the necessary length of the string and the distance between the pins respectively in $cm$, are
For the ellipse $\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{28}} = 1$, the eccentricity is
For an ellipse $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$ with vertices $A$ and $ A', $ tangent drawn at the point $P$ in the first quadrant meets the $y-$axis in $Q $ and the chord $ A'P$ meets the $y-$axis in $M.$ If $ 'O' $ is the origin then $OQ^2 - MQ^2$ equals to