Length of common chord of the ellipse ${\frac{{\left( {x - 2} \right)}}{9}^2} + {\frac{{\left( {y + 2} \right)}}{4}^2} = 1$ and the circle ${x^2} + {y^2} - 4x + 2y + 4 = 0$

  • A

    $0$

  • B

    $\frac{1}{{\sqrt 2 }}$

  • C

    $1$

  • D

    ${\kern 1pt} \sqrt 2 $

Similar Questions

Tangents at extremities of latus rectum of ellipse $3x^2 + 4y^2 = 12$ form a rhombus of area (in $sq.\ units$) -

The line $x\cos \alpha + y\sin \alpha = p$ will be a tangent to the conic $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, if

The radius of the circle having its centre at $(0, 3)$ and passing through the foci of the ellipse $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1$, is

  • [IIT 1995]

Minimum distance between two points $P$ and $Q$ on the ellipse $\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{4} = 1$ , if difference between eccentric angles of $P$ and $Q$ is $\frac{{3\pi }}{2}$ , is

Let $L$ be a tangent line to the parabola $y^{2}=4 x-20$ at $(6,2)$ . If $L$ is also a tangent to the ellipse $\frac{ x ^{2}}{2}+\frac{ y ^{2}}{ b }=1,$ then the value of $b$ is equal to ..... .

  • [JEE MAIN 2021]