3 and 4 .Determinants and Matrices
normal

Let $k_1$, $k_2$ be the maximum and minimum values of $k$ for which the system of equations given by

$x + ky = 1$ ; $kx + y = 2$;  $x + y = k$  are consistent then $k_1^2 + k_2^2$ is equal to

A

$\frac{{7 - \sqrt {13} }}{2}$

B

$5$

C

$\frac{{9 - \sqrt {13} }}{2}$

D

$7$

Solution

For the system to be consistent $\Delta=0$

$\Rightarrow\left|\begin{array}{lll}{1} & {k} & {1} \\ {k} & {1} & {2} \\ {1} & {1} & {k}\end{array}\right|=0$

$\Rightarrow(k-1)\left(k^{2}+k-3\right)=0$

$\Rightarrow \mathrm{k}=1$ or $\mathrm{k}^{2}+\mathrm{k}-3=0$

But if $\mathrm{k}=1$ equations will have no solution

$\Rightarrow \mathrm{k}^{2}+\mathrm{k}=3$

Further if $\mathrm{k}^{2}+\mathrm{k}=3$ then none of the pair of lines are parallel

$\Rightarrow \mathrm{k}_{1}^{2}+\mathrm{k}_{2}^{2}=7$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.