જો $k_1$, $k_2$ એ $k$ ની મહતમ અને ન્યૂનતમ કિમતો છે કે જેથી સમીકરણોની સહંતિ  $x + ky = 1$ ; $kx + y = 2$;  $x + y = k$  એ સુસંગત થાય છે તો $k_1^2 + k_2^2$ મેળવો.

  • A

    $\frac{{7 - \sqrt {13} }}{2}$

  • B

    $5$

  • C

    $\frac{{9 - \sqrt {13} }}{2}$

  • D

    $7$

Similar Questions

જો સમીકરણોની સંહતિ $kx + 2y - z = 2,$$\left( {k - 1} \right)x + ky + z = 1,x + \left( {k - 1} \right)y + kz = 3$ ને માત્ર એકજ ઉકેલ હોય તો $k$ ની શક્ય વાસ્તવિક કિમંતોની સંખ્યા મેળવો.

ધારો કે સુરેખ સમીકરણ સંહતિ $x +2 y + z =2$, $\alpha x +3 y - z =\alpha,-\alpha x + y +2 z =-\alpha$ સુસંગત નથી.તો $\alpha=\dots\dots\dots\dots$

  • [JEE MAIN 2022]

જો $x, y, z > 0$ અનુક્રમે સમગુણોતર શ્રેણીના $2^{nd}, 3^{rd}, 4^{th}$ પદ હોય અને $\Delta  = \left| {\begin{array}{*{20}{c}}
{{X^k}}&{{X^{k + 1}}}&{{X^{k + 2}}}\\
{{Y^k}}&{{Y^{k + 1}}}&{{Y^{k + 2}}}\\
{{Z^k}}&{{Z^{k + 1}}}&{{Z^{k + 2}}}
\end{array}} \right| = {\left( {r - 1} \right)^2}\left( {1 - \frac{1}{{{r^2}}}} \right)$  મેળવો.      ( કે જ્યાં  $r$ એ સામાન્ય ગુણોતર છે . ) $k=$ .......

જો $\alpha $ અને $\beta $ એ સમીકરણ $x^2 + x + 1 = 0$ ના બીજ હોય તો  $y (\ne 0) \in R$ માટે $\left| {\begin{array}{*{20}{c}}
{y\, + \,1}&\alpha &\beta \\
\alpha &{y\, + \,\beta }&1\\
\beta &1&{y\, + \,\alpha }
\end{array}} \right|$  મેળવો.

  • [JEE MAIN 2019]

સમીકરણ સંહતિને $2{x_1} - 2{x_2} + {x_3} = \lambda {x_1}\;,\;2{x_1} - 3{x_2} + 2{x_3} = \lambda {x_2}\;\;,\;\; - {x_1} + 2{x_2} = \lambda {x_3}$ યોગ્ય ઉકેલ હોય તેવા બધાજ $\lambda $ ઓનો ગણ . . . . . . છે.

  • [JEE MAIN 2015]