14.Probability
hard

ધારોકે એક પાસાને $n$ વખત ફેંકવામા આવે છે. ધારોકે સાત વખત એકી સંખ્યાઓ મળવાની સંભાવના એ નવ વખત એકી સંખ્યાઓ મળવાની સંભાવના બરાબર છે.જો બે વખત બેકી સંખ્યાઓ મળવાની સંભાવના $\frac{k}{2^{15}}$ હોય, તો $k =........$

A

$30$

B

$90$

C

$15$

D

$60$

(JEE MAIN-2023)

Solution

$P$ (odd number 7 times) $= P$ (odd number 9 times)

${ }^{ n } C _7\left(\frac{1}{2}\right)^7\left(\frac{1}{2}\right)^{ n -7}={ }^{ n } C _9\left(\frac{1}{2}\right)^9\left(\frac{1}{2}\right)^{ n -9}$

${ }^{ n } C _7={ }^{ n } C _9$

$\Rightarrow n =16$

Required

$P ={ }^{16} C _2 \times\left(\frac{1}{2}\right)^{16}$

$=\frac{16 \cdot 15}{2} \times \frac{1}{2^{16}}=\frac{15}{2^{13}}$

$\Rightarrow \frac{60}{2^{15}} \Rightarrow k =60$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.