माना $6 x$ की बढ़ती घातों में $(3+6 x )^{ n }$ के द्विपद प्रसार में $x =\frac{3}{2}$ पर 9 पद का मान अधिकतम होने के लिए, $n$ का निम्नतम मान $n _0$ है। यदि $x ^6$ का गुणांक का $x ^3$ के गुणांक से अनुपात $k$ है, तो $k + n _0$ बराबर है $.............$
$24$
$12$
$6$
$3$
यदि ${(1 + x)^{21}}$के प्रसार में ${x^r}$ तथा ${x^{r + 1}}$ के गुणांक बराबर हैं, तो $r$ का मान है
यदि $\left(a x-\frac{1}{b x^2}\right)^{13}$ में $x^7$ का गुणांक तथा $\left(a x+\frac{1}{b x^2}\right)^{13}$ में $x^{-5}$ का गुणांक बराबर हैं, तो $a^4 b^4$ बराबर है :
${\left( {x + \frac{1}{x}} \right)^{10}}$के विस्तार में मध्य पद है
${(1 + {t^2})^{12}}(1 + {t^{12}})\,(1 + {t^{24}})$ के विस्तार में ${t^{24}}$ का गुणांक होगा
निम्नलिखित के प्रसार में व्यापक पद लिखिए
$\left(x^{2}-y\right)^{6}$