7.Binomial Theorem
hard

यदि ${(1 + x)^m}{(1 - x)^n}$ के प्रसार $(expansion)$ में $x$ और ${x^2}$ के गुणांक $(coefficient)$ क्रमश: $3$ और  $-6$ हैं, तो $m =$

A

$6$

B

$9$

C

$12$

D

$24$

(IIT-1999)

Solution

${(1 + x)^m}{(1 – x)^n}$

 $ = \left( {1 + mx + \frac{{m(m – 1){x^2}}}{{2!}} + ….} \right)\,\left( {1 – nx + \frac{{n(n – 1)}}{{2!}}{x^2} – ….} \right)$

$ = 1 + (m – n)x + \left[ {\frac{{{n^2} – n}}{2} – mn + \frac{{({m^2} – m)}}{2}} \right]{x^2}$+………

दिया है, $m -n = 3$  या $n = m -3$

अत: $\frac{{{n^2} – n}}{2} – mn + \frac{{{m^2} – m}}{2} =  – 6$

$\frac{{(m – 3)(m – 4)}}{2} – m(m – 3) + \frac{{{m^2} – m}}{2} =  – 6$

${m^2} – 7m + 12 – 2{m^2} + 6m + {m^2} – m + 12 = 0$

$ – 2m + 24 = 0\,\,\, \Rightarrow m = 12$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.