- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
medium
Let the area of the triangle with vertices $A (1, \alpha)$, $B (\alpha, 0)$ and $C (0, \alpha)$ be $4\, sq.$ units. If the point $(\alpha,-\alpha),(-\alpha, \alpha)$ and $\left(\alpha^{2}, \beta\right)$ are collinear, then $\beta$ is equal to
A
$64$
B
$-8$
C
$-64$
D
$512$
(JEE MAIN-2022)
Solution
$\frac{1}{2}\left|\begin{array}{lll}\alpha & 0 & 1 \\ 1 & \alpha & 1 \\ 0 & \alpha & 1\end{array}\right|=\pm 4$
$\alpha=\pm 8$
Now given points $(8,-8),(-8,8),(64, \beta)$
$OR (-8,8),(8,-8),(64, \beta)$
are collinear $\Rightarrow$ Slope $=-1$.
$\beta=-64$
Standard 12
Mathematics