3 and 4 .Determinants and Matrices
medium

माना $A (1, \alpha), B (\alpha, 0)$ तथा $C (0, \alpha)$ शीर्षो वाले त्रिभुज का क्षेत्रफल $4$ वर्ग इकाई है। यदि बिन्दु $(\alpha,-\alpha),(-\alpha, \alpha)$ तथा $\left(\alpha^2, \beta\right)$ संरेखीय हो, तो $\beta$ का मान होगा

A

$64$

B

$-8$

C

$-64$

D

$512$

(JEE MAIN-2022)

Solution

$\frac{1}{2}\left|\begin{array}{lll}\alpha & 0 & 1 \\ 1 & \alpha & 1 \\ 0 & \alpha & 1\end{array}\right|=\pm 4$

$\alpha=\pm 8$

Now given points $(8,-8),(-8,8),(64, \beta)$

$OR (-8,8),(8,-8),(64, \beta)$

are collinear $\Rightarrow$ Slope $=-1$.

$\beta=-64$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.