ધારો કે $A (1, \alpha)$, $B (\alpha, 0)$ અને $C (0, \alpha)$ શિરોબિંદુઆવાળા ત્રિકોણનું ક્ષેત્રફળ $4$ ચોરસ એકમ છે. જો બિંદુઆ $(\alpha,-\alpha),(-\alpha, \alpha)$ અને $\left(\alpha^{2}, \beta\right)$ સમરેખ હોય, તો $\beta$ =...........
$64$
$-8$
$-64$
$512$
$\left| {\,\begin{array}{*{20}{c}}{{a_1}}&{m{a_1}}&{{b_1}}\\{{a_2}}&{m{a_2}}&{{b_2}}\\{{a_3}}&{m{a_3}}&{{b_3}}\end{array}\,} \right| = $
ધારો કે $a ,b ,c $ માટે $b + c \ne 0$ . જો $\left| {\begin{array}{*{20}{c}}a&{a + 1}&{a - 1}\\{ - b}&{b + 1}&{b - 1}\\c&{c - 1}&{c + 1}\end{array}} \right| + \left| {\begin{array}{*{20}{c}}{a + 1}&{b + 1}&{c - 1}\\{a - 1}&{b - 1}&{c + 1}\\{{{\left( { - 1} \right)}^{n + 2}} \bullet a}&{{{\left( { - 1} \right)}^{n + 1}} \bullet b}&{{{\left( { - 1} \right)}^n} \bullet c}\end{array}} \right| = 0$ તો $n$ મેળવો.
વિધાન $-1$ : સમીકરણો $x + \left( {\sin \,\alpha } \right)y + \left( {\cos \,\alpha } \right)z = 0$ ;$x + \left( {\cos \,\alpha } \right)y + \left( {\sin \alpha } \right)z = 0$ ;$x - \left( {\sin \,\alpha } \right)y - \left( {\cos \alpha } \right)z = 0$ ; ને શૂન્યતર ઉકેલ એ $\alpha $ ની માત્ર એકજ કિમત કે જે અંતરાલ $\left( {0\,,\,\frac{\pi }{2}} \right)$ તેના માટે ધરાવે છે .
વિધાન $-2$ : સમીકરણ કે જે $\alpha $ સ્વરૂપ માં છે
$\left| {\begin{array}{*{20}{c}}
{\cos {\mkern 1mu} \alpha }&{\sin {\mkern 1mu} \alpha }&{\cos {\mkern 1mu} \alpha } \\
{\sin {\mkern 1mu} \alpha }&{\cos {\mkern 1mu} \alpha }&{\sin {\mkern 1mu} \alpha } \\
{\cos {\mkern 1mu} \alpha }&{ - \sin {\mkern 1mu} \alpha }&{ - \cos {\mkern 1mu} \alpha }
\end{array}} \right| = 0$
નું એક માત્ર બીજ અંતરાલ $\left( {0\,,\,\frac{\pi }{2}} \right)$ માં છે .
નિશ્ચાયકનો ઉપયોગ કરી $(1, 2)$ અને $(3, 6)$ ને જોડતી રેખાનું સમીકરણ શોધો.
જો $\left| {\,\begin{array}{*{20}{c}}a&b&{a + b}\\b&c&{b + c}\\{a + b}&{b + c}&0\end{array}\,} \right| = 0$; તો $a,b,c$ એ .. . . શ્રેણીમાં છે .