ધારોકે $( a + b )^{12}$ ના દ્વિપદ્દી વિસ્તરણમાં ત્રણ ક્રમિક પદો $T _{ r }, T _{ r +1}$ અને $T _{ r +2}$ નાં સહગુણકો સમગુણોત્તર શ્રેણીમાં છે. ધારોકે $r$ ની તમામ શક્ય કિંમતોની સંખ્યા $p$ છે. ધારોકે $(\sqrt[4]{3}+\sqrt[3]{4})^{12}$ ના દ્વિપદ્દી વિસ્તરણમાં તમામ સંમેય પદોનો સરવાળો $q$ છે. તો $p+q=$ ______________

  • [JEE MAIN 2025]
  • A
    $283$
  • B
    $295$
  • C
    $287$
  • D
    $299$

Similar Questions

જો $(1 + x)^n$ ના વિસ્તરણમાં કોઈ ત્રણ ક્રમિક પદોના સહગુણકનો ગુણોત્તર $1 : 7 : 42,$ હોય તો વિસ્તરણમાં આવેલા આ ત્રણ ક્રમિક પદોમાં પહેલું પદ કેટલામું હશે ?

  • [JEE MAIN 2015]

${({y^{ - 1/6}} - {y^{1/3}})^9}$ ના વિસ્તરણમાં અચળપદ મેળવો.

$(1+x)^{20}$ વિસ્તરણમાં મધ્યમ પદ અને $(1+x)^{19}$ ના વિસ્તરણમાં બે મધ્યમ પદોનો સરવાળાનો ગુણોતર મેળવો.

  • [JEE MAIN 2021]

 ${\left( {3x - \frac{1}{{{x^2}}}} \right)^{10}}$ then $5^{th}$ ના વિસ્તરણમાં છેલ્લેથી પાંચમું પદ મેળવો 

જો $\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^{n}$ ના વિસ્તરણના શરૂઆતથી પાંચમા પદ અને છેલ્લે થી પાંચમા પદનો ગુણોત્તર $\sqrt{6}: 1$ હોય, તો $n$ શોધો.