Let the coefficients of three consecutive terms in the binomial expansion of $(1+2 x)^{ n }$ be in the ratio $2: 5: 8$. Then the coefficient of the term, which is in the middle of these three terms, is $...........$.
$1020$
$9920$
$1120$
$1000$
Let $\mathrm{m}$ and $\mathrm{n}$ be the coefficients of seventh and thirteenth terms respectively in the expansion of $\left(\frac{1}{3} \mathrm{x}^{\frac{1}{3}}+\frac{1}{2 \mathrm{x}^{\frac{2}{3}}}\right)^{18}$. Then $\left(\frac{\mathrm{n}}{\mathrm{m}}\right)^{\frac{1}{3}}$ is :
Prove that $\sum\limits_{r = 0}^n {{3^r}{\,^n}{C_r} = {4^n}} $
In the expansion of $(1+x)\left(1-x^2\right)\left(1+\frac{3}{x}+\frac{3}{x^2}+\frac{1}{x^3}\right)^5, x \neq 0$, the sum of the coefficient of $x^3$ and $x^{-13}$ is equal to
The ratio of the coefficient of $x^{15}$ to the term independent of $x$ in the expansion of ${\left( {{x^2} + \frac{2}{x}} \right)^{15}}$ is
The term independent of $x$ in the expansion of ${\left( {{x^2} - \frac{{3\sqrt 3 }}{{{x^3}}}} \right)^{10}}$ is