- Home
- Standard 11
- Mathematics
माना $(1+2 \mathrm{x})^{\mathrm{n}}$ द्विपद प्रसार में तीन क्रमागत पदों के गुणांक का अनुपात $2: 5: 8$ है। इन तीन पदों के मध्य पद का गुणांक है__________.
$1020$
$9920$
$1120$
$1000$
Solution
$\Rightarrow \frac{{ }^n C_{r-1}(2)^{r-1}}{{ }^{ n } C_r(2)^r}=\frac{2}{5}$
$\Rightarrow \frac{\frac{n !}{(r-1) !(n-r+1) !}}{\frac{n !(2)}{r !(n-r) !}}=\frac{2}{5}$
$\Rightarrow \frac{r}{n-r+1}=\frac{4}{5} \Rightarrow 5 r=4 n-4 r+4$
$\Rightarrow \frac{{ }^n C_r(2)^r}{{ }^n C_{r+1}(2)^{r+1}}=\frac{5}{8}$
$\Rightarrow \frac{\frac{n !}{r !(n-r) !}}{\frac{n !}{(r+1) !(n-r-1) !}}=\frac{5}{4} \Rightarrow \frac{r+1}{n-r}=\frac{5}{4}$
$\Rightarrow 4 r+4=5 n-5 r \Rightarrow 5 n-4=9 r \ldots$
From (1) and (2)
$\Rightarrow 4 n +4=5 n -4 \Rightarrow n =8$
$(1)$ $\Rightarrow r=4$
so, coefficient of middle term is
${ }^8 C_4 2^4=16 \times \frac{8 \times 7 \times 6 \times 5}{4 \times 3 \times 2 \times 1}=16 \times 70=1120$