Let the common tangents to the curves $4\left(x^{2}+y^{2}\right)=$ $9$ and $y ^{2}=4 x$ intersect at the point $Q$. Let an ellipse, centered at the origin $O$, has lengths of semi-minor and semi-major axes equal to $OQ$ and $6$ , respectively. If $e$ and $l$ respectively denote the eccentricity and the length of the latus rectum of this ellipse, then $\frac{l}{ e ^{2}}$ is equal to

  • [JEE MAIN 2022]
  • A

    $5$

  • B

    $4$

  • C

    $3$

  • D

    $2$

Similar Questions

Consider an elIipse, whose centre is at the origin and its major axis is along the $x-$ axis. If its eccentricity is $\frac{3}{5}$ and the distance between its foci is $6$, then the area (in sq. units) of the quadrilateral inscribed in the ellipse, with the vertices as the vertices of the ellipse, is

  • [JEE MAIN 2017]

In an ellipse, the distance between its foci is $6$ and minor axis is $8.$ Then its eccentricity is :

Equation of the ellipse whose axes are the axes of coordinates and which passes through the point  $(-3,1) $ and has eccentricity $\sqrt {\frac{2}{5}} $ is 

  • [AIEEE 2011]

Consider the ellipse $\frac{x^2}{9}+\frac{y^2}{4}=1$. Let $S(p, q)$ be a point in the tirst quadrant such that $\frac{p^2}{9}+\frac{q^2}{4}>1$. I wo tangents are drawn from $S$ to the ellipse, of which one meets the ellipse at one end point of the minor axis and the other meets the ellipse at a point $T$ in the fourth quadrant. Let $R$ be the vertex of the ellipse with positive $x$-coordinate and $O$ be the center of the ellipse. If the area of the triangle $\triangle O R T$ is $\frac{3}{2}$, then which of the following options is correct?

  • [IIT 2024]

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{100}=1$