Gujarati
Hindi
10-2. Parabola, Ellipse, Hyperbola
normal

The equations of the common tangents to the ellipse, $ x^2 + 4y^2 = 8 $ $\&$  the parabola $y^2 = 4x$  can be

A

$x + 2y + 4 = 0$

B

$x - 2y + 4 = 0$

C

$2x + y - 4 = 0$

D

both $(A)$ and $(B)$

Solution

Equation of tangent to above curves are respectively.

$y ^{2}= mx +\frac{1}{ m }$ and $y = mx +\sqrt{8 m ^{2}+2}$

Comparing $\frac{1}{ m }=\sqrt{8 m ^{2}+2}$

$\Rightarrow m ^{2}\left(8 m ^{2}+2\right)=1$

seeing the options

$m =\pm \frac{1}{2}$ satisfy the equation

$\Rightarrow y=\pm \frac{1}{2} x \pm 2 \Rightarrow 2 y=\pm x \pm 4$

i.e. $2 y=x+4 \& x+2 y+4=0$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.