The equations of the common tangents to the ellipse, $ x^2 + 4y^2 = 8 $ $\&$ the parabola $y^2 = 4x$ can be
$x + 2y + 4 = 0$
$x - 2y + 4 = 0$
$2x + y - 4 = 0$
both $(A)$ and $(B)$
If the centre, one of the foci and semi-major axis of an ellipse be $(0, 0), (0, 3)$ and $5$ then its equation is
An ellipse is drawn with major and minor axes of lengths $10 $ and $8$ respectively. Using one focus as centre, a circle is drawn that is tangent to the ellipse, with no part of the circle being outside the ellipse. The radius of the circle is
The equation of the normal to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ at the point $(a\cos \theta ,\;b\sin \theta )$ is
If tangents are drawn to the ellipse $x^2 + 2y^2 = 2$ at all points on the ellipse other than its four vertices than the mid points of the tangents intercepted between the coordinate axes lie on the curve
Let the ellipse $E : x ^2+9 y ^2=9$ intersect the positive $x$ - and $y$-axes at the points $A$ and $B$ respectively Let the major axis of $E$ be a diameter of the circle $C$. Let the line passing through $A$ and $B$ meet the circle $C$ at the point $P$. If the area of the triangle which vertices $A, P$ and the origin $O$ is $\frac{m}{n}$, where $m$ and $n$ are coprime, then $m - n$ is equal to