- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
normal
The equations of the common tangents to the ellipse, $ x^2 + 4y^2 = 8 $ $\&$ the parabola $y^2 = 4x$ can be
A
$x + 2y + 4 = 0$
B
$x - 2y + 4 = 0$
C
$2x + y - 4 = 0$
D
both $(A)$ and $(B)$
Solution
Equation of tangent to above curves are respectively.
$y ^{2}= mx +\frac{1}{ m }$ and $y = mx +\sqrt{8 m ^{2}+2}$
Comparing $\frac{1}{ m }=\sqrt{8 m ^{2}+2}$
$\Rightarrow m ^{2}\left(8 m ^{2}+2\right)=1$
seeing the options
$m =\pm \frac{1}{2}$ satisfy the equation
$\Rightarrow y=\pm \frac{1}{2} x \pm 2 \Rightarrow 2 y=\pm x \pm 4$
i.e. $2 y=x+4 \& x+2 y+4=0$
Standard 11
Mathematics
Similar Questions
normal