The length of the chord of the ellipse $\frac{x^2}{25}+\frac{y^2}{16}=1$, whose mid point is $\left(1, \frac{2}{5}\right)$, is equal to:

  • [JEE MAIN 2024]
  • A

     $\frac{\sqrt{1691}}{5}$

  • B

     $\frac{\sqrt{2009}}{5}$

  • C

     $\frac{\sqrt{1741}}{5}$

  • D

     $\frac{\sqrt{1541}}{5}$

Similar Questions

If a number of ellipse be described having the same major axis $2a$  but a variable minor axis then the tangents at the ends of their latera recta pass through fixed points which can be

Equation of the ellipse whose axes are the axes of coordinates and which passes through the point  $(-3,1) $ and has eccentricity $\sqrt {\frac{2}{5}} $ is 

  • [AIEEE 2011]

Let $P$ be an arbitrary point on the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ $a > b > 0$. Suppose $F_1$ and $F_2$ are the foci of the ellipse. The locus of the centroid of the $\Delta P F_1 F_2$ as $P$ moves on the ellipse is

  • [KVPY 2010]

A vertical line passing through the point $(h, 0)$ intersects the ellipse $\frac{x^2}{4}+\frac{y^2}{3}=1$ at the points $P$ and $Q$. Let the tangents to the ellipse at $P$ and $Q$ meet at the point $R$. If $\Delta(h)=$ area of the triangle $P Q R, \Delta_1=\max _{1 / 2 \leq h \leq 1} \Delta(h)$ and $\Delta_2=\min _{1 / 2 \leq h \leq 1} \Delta(h)$, then $\frac{8}{\sqrt{5}} \Delta_1-8 \Delta_2=$

  • [IIT 2013]

The  the circle passing through the foci of the $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1$ and having centre at $(0,3) $ is

  • [JEE MAIN 2013]