- Home
- Standard 11
- Mathematics
The length of the chord of the ellipse $\frac{x^2}{25}+\frac{y^2}{16}=1$, whose mid point is $\left(1, \frac{2}{5}\right)$, is equal to:
$\frac{\sqrt{1691}}{5}$
$\frac{\sqrt{2009}}{5}$
$\frac{\sqrt{1741}}{5}$
$\frac{\sqrt{1541}}{5}$
Solution
Equation of chord with given middle point.
$\mathrm{T}=\mathrm{S}_1$
$ \frac{x}{25}+\frac{y}{40}=\frac{1}{25}+\frac{1}{100} $
$ \frac{8 x+5 y}{200}=\frac{8+2}{200}$
$y=\frac{10-8 x}{5}$ $…….(i)$
$\frac{x^2}{25}+\frac{(10-8 x)^2}{400}=1$ (put in original equation)
$\frac{16 \mathrm{x}^2+100+64 \mathrm{x}^2-160 \mathrm{x}}{400}=1$
$ 4 x^2-8 x-15=0 $
$ x=\frac{8 \pm \sqrt{304}}{8} $
$x_1=\frac{8+\sqrt{304}}{8} ; x_2=\frac{8-\sqrt{304}}{8}$
$\mathrm{x}_1=\frac{8+\sqrt{304}}{8} ; \mathrm{x}_2=\frac{8-\sqrt{304}}{8}$
Similarly, $y=\frac{10-18 \pm \sqrt{304}}{5}=\frac{2 \pm \sqrt{304}}{5}$
$\mathrm{y}_1=\frac{2-\sqrt{304}}{5} ; \mathrm{y}_2=\frac{2+\sqrt{304}}{5}$
Distance =$\sqrt{\left(\mathrm{x}_1-\mathrm{x}_2\right)^2+\left(\mathrm{y}_1-\mathrm{y}_2\right)^2}$
$=\sqrt{\frac{4 \times 304}{64}+\frac{4 \times 304}{25}}=\frac{\sqrt{1691}}{5}$
Similar Questions
Consider the ellipse
$\frac{x^2}{4}+\frac{y^2}{3}=1$
Let $H (\alpha, 0), 0<\alpha<2$, be a point. A straight line drawn through $H$ parallel to the $y$-axis crosses the ellipse and its auxiliary circle at points $E$ and $F$ respectively, in the first quadrant. The tangent to the ellipse at the point $E$ intersects the positive $x$-axis at a point $G$. Suppose the straight line joining $F$ and the origin makes an angle $\phi$ with the positive $x$-axis.
$List-I$ | $List-II$ |
If $\phi=\frac{\pi}{4}$, then the area of the triangle $F G H$ is | ($P$) $\frac{(\sqrt{3}-1)^4}{8}$ |
If $\phi=\frac{\pi}{3}$, then the area of the triangle $F G H$ is | ($Q$) $1$ |
If $\phi=\frac{\pi}{6}$, then the area of the triangle $F G H$ is | ($R$) $\frac{3}{4}$ |
If $\phi=\frac{\pi}{12}$, then the area of the triangle $F G H$ is | ($S$) $\frac{1}{2 \sqrt{3}}$ |
($T$) $\frac{3 \sqrt{3}}{2}$ |
The correct option is: