Gujarati
1. Electric Charges and Fields
normal

Let the electrostatic field $E$ at distance $r$ from a point charge $q$ not be an inverse square but instead an inverse cubic, e.g. $E =k \cdot \frac{q}{r^{3}} \hat{ r }$, here $k$ is a constant.

Consider the following two statements:

$(I)$ Flux through a spherical surface enclosing the charge is $\phi=q_{\text {enclosed }} / \varepsilon_{0}$.

$(II)$ A charge placed inside uniformly charged shell will experience a force.

Which of the above statements are valid?

A

Only statement $I$ is valid

B

Only statement $II$ is valid

C

Both statements $I$ and $II$ are invalid

D

Both statements $I$ and $II$ are valid

(KVPY-2017)

Solution

$(b)$ If $E=\frac{k q}{r^{3}} \cdot \hat{ r }$, then flux through a shell enclosing a charge $q$ is

$\phi=\int E \cdot d A =\int \frac{k q}{r^{3}} \cdot d A$

$=\frac{k q}{r^{3}} \int d A=\frac{k q}{r^{3}} \cdot 4 \pi r^{2}$

$\therefore \quad \phi=\frac{k q(4 \pi)}{r}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{4 \pi q}{r}$

$\Rightarrow \quad \phi=\frac{q}{\varepsilon_{0} r} \neq \frac{q}{\varepsilon_{0}}$

Also, when $E=\frac{k q}{r^{3}}$, Gauss' law is not valid and electric field at an interior point of a charged shell is non-zero.

$\therefore$ Charge placed inside shell experience a force.

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.