Let the electrostatic field $E$ at distance $r$ from a point charge $q$ not be an inverse square but instead an inverse cubic, e.g. $E =k \cdot \frac{q}{r^{3}} \hat{ r }$, here $k$ is a constant.
Consider the following two statements:
$(I)$ Flux through a spherical surface enclosing the charge is $\phi=q_{\text {enclosed }} / \varepsilon_{0}$.
$(II)$ A charge placed inside uniformly charged shell will experience a force.
Which of the above statements are valid?
Only statement $I$ is valid
Only statement $II$ is valid
Both statements $I$ and $II$ are invalid
Both statements $I$ and $II$ are valid
An electric charge $q$ is placed at the centre of a cube of side $\alpha $. The electric flux on one of its faces will be
Gauss's law can help in easy calculation of electric field due to
What will be the total flux through the faces of the cube as in figure with side of length $'a'$ if a charge $'q'$ is placed at ?
$(a)$ $C$ $:$ centre of a face of the cube.
$(b)$ $D$ $:$ midpoint of $B$ and $C$.
A cube of a metal is given a positive charge $Q$. For the above system, which of the following statements is true
An infinite, uniformly charged sheet with surface charge density $\sigma$ cuts through a spherical Gaussian surface of radius $R$ at a distance $x$ from its center, as shown in the figure. The electric flux $\Phi $ through the Gaussian surface is