Let the foci of a hyperbola $\mathrm{H}$ coincide with the foci of the ellipse $E: \frac{(x-1)^2}{100}+\frac{(y-1)^2}{75}=1$ and the eccentricity of the hyperbola $\mathrm{H}$ be the reciprocal of the eccentricity of the ellipse $E$. If the length of the transverse axis of $\mathrm{H}$ is $\alpha$ and the length of its conjugate axis is $\beta$, then $3 \alpha^2+2 \beta^2$ is equal to :
$242$
$225$
$237$
$205$
Consider a branch of the hyperbola $x^2-2 y^2-2 \sqrt{2} x-4 \sqrt{2} y-6=0$ with vertex at the point $A$. Let $B$ be one of the end points of its latus rectum. If $\mathrm{C}$ is the focus of the hyperbola nearest to the point $\mathrm{A}$, then the area of the triangle $\mathrm{ABC}$ is
The latus rectum of the hyperbola $9{x^2} - 16{y^2} - 18x - 32y - 151 = 0$ is
The graph of the conic $ x^2 - (y - 1)^2 = 1$ has one tangent line with positive slope that passes through the origin. the point of tangency being $(a, b). $ Then Length of the latus rectum of the conic is
The difference of the focal distance of any point on the hyperbola $9{x^2} - 16{y^2} = 144$, is
The locus of the point of intersection of the lines $(\sqrt{3}) kx + ky -4 \sqrt{3}=0$ and $\sqrt{3} x-y-4(\sqrt{3}) k=0$ is a conic, whose eccentricity is .............