If ${m_1}$ and ${m_2}$are the slopes of the tangents to the hyperbola $\frac{{{x^2}}}{{25}} - \frac{{{y^2}}}{{16}} = 1$ which pass through the point $(6, 2)$, then
${m_1} + {m_2} = \frac{{24}}{{11}}$
${m_1}{m_2} = \frac{{20}}{{11}}$
${m_1} + {m_2} = \frac{{48}}{{11}}$
both $(a)$ and $(b)$
Let the eccentricity of an ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ is reciprocal to that of the hyperbola $2 x^2-2 y^2=1$. If the ellipse intersects the hyperbola at right angles, then square of length of the latus-rectum of the ellipse is $................$.
If $2 x-y+1=0$ is a tangent to the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{16}=1$, then which of the following $CANNOT$ be sides of a right angled triangle?
$[A]$ $2 a, 4,1$ $[B]$ $2 a, 8,1$ $[C]$ $a, 4,1$ $[D]$ $a, 4,2$
A hyperbola passes through the point $P\left( {\sqrt 2 ,\sqrt 3 } \right)$ has foci at $\left( { \pm 2,0} \right)$. Then the tangent to this hyperbola at $P$ also passes through the point
Find the equation of the hyperbola satisfying the give conditions: Foci $(\pm 4,\,0),$ the latus rectum is of length $12$
The eccentricity of the hyperbola $2{x^2} - {y^2} = 6$ is