If ${m_1}$ and ${m_2}$are the slopes of the tangents to the hyperbola $\frac{{{x^2}}}{{25}} - \frac{{{y^2}}}{{16}} = 1$ which pass through the point $(6, 2)$, then

  • A

    ${m_1} + {m_2} = \frac{{24}}{{11}}$

  • B

    ${m_1}{m_2} = \frac{{20}}{{11}}$

  • C

    ${m_1} + {m_2} = \frac{{48}}{{11}}$

  • D

    both $(a)$ and $(b)$

Similar Questions

Let the hyperbola $H : \frac{ x ^{2}}{ a ^{2}}- y ^{2}=1$ and the ellipse $E: 3 x^{2}+4 y^{2}=12$ be such that the length of latus rectum of $H$ is equal to the length of latus rectum of $E$. If $e_{ H }$ and $e_{ E }$ are the eccentricities of $H$ and $E$ respectively, then the value of $12\left( e _{ H }^{2}+ e _{ E }^{2}\right)$ is equal to

  • [JEE MAIN 2022]

The equation of the director circle of the hyperbola $\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{4} = 1$ is given by

The line $lx + my + n = 0$ will be a tangent to the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$, if

Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $49 y^{2}-16 x^{2}=784$

Consider a hyperbola $\mathrm{H}$ having centre at the origin and foci and the $\mathrm{x}$-axis. Let $\mathrm{C}_1$ be the circle touching the hyperbola $\mathrm{H}$ and having the centre at the origin. Let $\mathrm{C}_2$ be the circle touching the hyperbola $\mathrm{H}$ at its vertex and having the centre at one of its foci. If areas (in sq. units) of $\mathrm{C}_1$ and $\mathrm{C}_2$ are $36 \pi$ and $4 \pi$, respectively, then the length (in units) of latus rectum of $\mathrm{H}$ is

  • [JEE MAIN 2024]