माना अतिपरवलय $H : \frac{ x ^2}{ a ^2}- y ^2=1$ तथा दीर्घवत्त $E : 3 x ^2+4 y ^2=12$ इस प्रकार है कि $H$ तथा $E$ के नाभिलम्बों की लम्बाईयाँ समान हैं। यदि $e _{ H }$ तथा $e_E$ क्रमशः $H$ तथा $E$ की उत्केन्द्रताएं हो, तो $12\left( e _{ H }^2+ e _{ E }^2\right)$ का मान होगा $...............$
$42$
$40$
$36$
$47$
यदि सरल रेखा $x\cos \alpha + y\sin \alpha = p$ अतिपरवलय $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ की स्पर्श रेखा हो, तब
यदि अतिपरवलय $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ पर दो स्पर्श रेखायें इस प्रकार खींची जाती हैं कि उनकी प्रवणताओं का गुणनफल ${c^2}$ है, तो वे निम्न वक्र पर प्रतिच्छेद करती हैं
अतिपरवलय $9{x^2} - 16{y^2} = 144$ पर स्थित किसी बिन्दु की नाभीय दूरियों का अन्तर है
रेखाओं $ax\sec \theta + by\tan \theta = a$ तथा $ax\tan \theta + by\sec \theta = b$, जहाँ $\theta $ प्राचल है, के प्रतिच्छेद बिन्दु का बिन्दुपथ है
अतिपरवलयों के शीर्षों, नाभियों के निर्देशांक, उत्केंद्रता और नाभिलंब जीवा की लंबाई ज्ञात कीजिए
$16 x^{2}-9 y^{2}=576$