13.Statistics
easy

Let the mean and variance of the frequency distribution

$\mathrm{x}$ $\mathrm{x}_{1}=2$ $\mathrm{x}_{2}=6$ $\mathrm{x}_{3}=8$ $\mathrm{x}_{4}=9$
$\mathrm{f}$ $4$ $4$ $\alpha$ $\beta$

be $6$ and $6.8$ respectively. If $x_{3}$ is changed from $8$ to $7 ,$ then the mean for the new data will be:

A

$\frac{16}{3}$

B

$4$

C

$\frac{17}{3}$

D

$5$

(JEE MAIN-2021)

Solution

$\text { Given } 32+8 \alpha+9 \beta=(8+\alpha+\beta) \times 6$

$\Rightarrow 2 \alpha+3 \beta=16 \quad \ldots \text { (i) }$

$\text { Also, } 4 \times 16+4 \times \alpha+9 \beta=(8+\alpha+\beta) \times 6.8$

$\Rightarrow 640+40 \alpha+90 \beta=544+68 \alpha+68 \beta$

$\Rightarrow 28 \alpha-22 \beta=96$

$\Rightarrow 14 \alpha-11 \beta=48 \quad \ldots (ii)$

from $(i)\, \, (ii)$

$\alpha=5 \, \,\beta=2$

so, new mean $=\frac{32+35+18}{15}=\frac{85}{15}=\frac{17}{3}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.