माना बारंबारता बंटन
$\mathrm{x}$ | $\mathrm{x}_{1}=2$ | $\mathrm{x}_{2}=6$ | $\mathrm{x}_{3}=8$ | $\mathrm{x}_{4}=9$ |
$\mathrm{f}$ | $4$ | $4$ | $\alpha$ | $\beta$ |
के माध्य तथा प्रसरण क्रमशः $6$ तथा $6.8$ हैं। यदि $x _{3}$ को $8$ से $7$ कर दिया जाए, तो नये आँकड़ों का माध्य होगा
$\frac{16}{3}$
$4$
$\frac{17}{3}$
$5$
यदि बारंबारता बंटन
$x_i$ | $2$ | $4$ | $6$ | $8$ | $10$ | $12$ | $14$ | $16$ |
$f_i$ | $4$ | $4$ | $\alpha$ | $15$ | $8$ | $\beta$ | $4$ | $5$ |
के माध्य तथा प्रसरण क्रमशः $9$ तथा $15.08$ हैं, तो $\alpha^2+\beta^2-\alpha \beta$ का मान है________________
यदि आँकड़ों का प्रत्येक प्रेक्षण, जिसका प्रसरण ${\sigma ^2}$ है, $\lambda$ से बढ़ाया जाता है, तब नये समूह का प्रसरण है....
यदि दस धन पूर्णांकों $1,1,1, \ldots, 1, k$ का प्रसरण $10$ से कम है, तो $k$ का अधिकतम संभावित मान ......... है |
निम्नलिखित बंटन के लिए माध्य, प्रसरण व मानक विचलन ज्ञात कीजिए
वर्ग | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ | $80-90$ | $90-100$ |
बारंबारता | $3$ | $7$ | $12$ | $15$ | $8$ | $3$ | $2$ |
एक डिज़ाइन में बनाए गए वृत्तों के व्यास (मिमी में) नीचे दिए गए हैं।
व्यास | $33-36$ | $37-40$ | $41-44$ | $45-48$ | $49-52$ |
वृत्तों संख्या | $15$ | $17$ | $21$ | $22$ | $25$ |
वृत्तों के व्यासों का मानक विचलन व माध्य व्यास ज्ञात कीजिए।