The mean and standard deviation of a group of $100$ observations were found to be $20$ and $3,$ respectively. Later on it was found that three observations were incorrect, which were recorded as $21,21$ and $18 .$ Find the mean and standard deviation if the incorrect observations are omitted.
Number of observations $(n)=100$
Incorrect mean $(\bar{x})=20$
Incorrect standard deviation $(\sigma)=3$
$ \Rightarrow 20 = \frac{1}{{100}}\sum\limits_{i = 1}^{300} {{x_i}} $
$ \Rightarrow \sum\limits_{i = 1}^{100} {{x_i}} = 20 \times 100 = 2000$
Incorrect sum of observations $=2000$
$\Rightarrow$ Correct sum of observations $=2000-21-21-18=2000-60=1940$
Find the mean and variance for the data $6,7,10,12,13,4,8,12$
The mean and $S.D.$ of the marks of $200$ candidates were found to be $40$ and $15$ respectively. Later, it was discovered that a score of $40$ was wrongly read as $50$. The correct mean and $S.D.$ respectively are...
If the standard deviation of the numbers $-1, 0, 1, k$ is $\sqrt 5$ where $k > 0,$ then $k$ is equal to
Consider three observations $a, b$ and $c$ such that $b = a + c .$ If the standard deviation of $a +2$ $b +2, c +2$ is $d ,$ then which of the following is true ?
If the variance of the following frequency distribution is $50$ then $x$ is equal to:
Class | $10-20$ | $20-30$ | $30-40$ |
Frequency | $2$ | $x$ | $2$ |