Let the relations $R_1$ and $R_2$ on the set $\mathrm{X}=\{1,2,3, \ldots, 20\}$ be given by $\mathrm{R}_1=\{(\mathrm{x}, \mathrm{y}): 2 \mathrm{x}-3 \mathrm{y}=2\}$ and $\mathrm{R}_2=\{(\mathrm{x}, \mathrm{y}):-5 \mathrm{x}+4 \mathrm{y}=0\}$. If $\mathrm{M}$ and $\mathrm{N}$ be the minimum number of elements required to be added in $R_1$ and $R_2$, respectively, in order to make the relations symmetric, then $\mathrm{M}+\mathrm{N}$ equals
$8$
$16$
$12$
$10$
Let $A = \{a, b, c\}$ and $B = \{1, 2\}$. Consider a relation $R$ defined from set $A$ to set $B$. Then $R$ is equal to set
If $A = \left\{ {1,2,3,......m} \right\},$ then total number of reflexive relations that can be defined from $A \to A$ is
If $R$ is a relation from a set $A$ to a set $B$ and $S$ is a relation from $B$ to a set $C$, then the relation $SoR$
Show that each of the relation $R$ in the set $A =\{x \in Z : 0 \leq x \leq 12\},$ given by $R =\{(a, b):|a-b| $ is a multiple of $4\}$
Let $P$ be the relation defined on the set of all real numbers such that
$P = \left\{ {\left( {a,b} \right):{{\sec }^2}\,a - {{\tan }^2}\,b = 1\,} \right\}$. Then $P$ is